Plethystic Formulas for Macdonaldq, t-Kostka Coefficients
نویسندگان
چکیده
منابع مشابه
Explicit Plethystic Formulas for Macdonald q,t-Kostka Coefficients
i=1 ti−1 (1+· · ·+qμi−1). In [8] Garsia-Tesler proved that if γ is a partition of k and λ = (n−k, γ) is a partition of n, then there is a unique symmetric polynomial kγ(x; q, t) of degree ≤ k with the property that K̃λμ(q, t) = kγ [Bμ(q, t); q, t] holds true for all partitions μ. It was shown there that these polynomials have Schur function expansions of the form kγ(x; q, t) = ∑ |ρ|≤|γ| Sλ(x) kρ...
متن کاملSome Plethystic Identities And Kostka-Foulkes Polynomials
plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → Λ n Q(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image ∇(En,k(X))...
متن کاملSome Plethystic Identites and Kostka-foulkes Polynomials
plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → ΛQ(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image∇(En,k(X)) of ...
متن کاملSOME NATURAL BIGRADED Sn-MODULES and q,t-KOSTKA COEFFICIENTS
We construct for each μ ` n a bigraded Sn-module Hμ and conjecture that its Frobenius characteristic Cμ(x; q, t) yields the Macdonald coefficients Kλμ(q, t). To be precise, we conjecture that the expansion of Cμ(x; q, t) in terms of the Schur basis yields coefficients Cλμ(q, t) which are related to the Kλμ(q, t) by the identity Cλμ(q, t) = Kλμ(q, 1/t)t. The validity of this would give a represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1996
ISSN: 0001-8708
DOI: 10.1006/aima.1996.0071